- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Nanayakkara, Rahal (2)
-
Tabuada, Paulo (2)
-
Balaji, Bharathan (1)
-
Ouyang, Xiaomin (1)
-
Sharma, Pragya (1)
-
Silvestre, João Pedro (1)
-
Srivastava, Mani B (1)
-
Wang, Brian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Real-time cyber-physical systems (CPS) rely on Perception-Cognition-Actuation (PCA) pipelines to enable autonomous observation, decisionmaking, and action execution. Closed-loop PCA systems utilize feedback-driven control to iteratively adapt actions in response to real-time environmental changes whereas open-loop PCA systems execute single actions without iterative feedback. The overall performance of these systems is inherently tied to the models selected for each pipeline component. Recent advancements in neural networks, particularly for perception tasks, have substantially enhanced CPS capabilities but have introduced significant complexity into the PCA pipeline. While traditional research [1] often evaluates perception models in static, controlled settings, it fails to account for the cascading latency and accuracy trade-offs that manifest across interconnected PCA modules in dynamic, real-time applications. Additionally, the proliferation of distributed device-edge-cloud architectures [2] has expanded computational possibilities but introduced new challenges in balancing latency and accuracy with resource constraints. The holistic impact of model selection, deployment platforms, and network conditions on application performance in real-time scenarios remains under-explored.more » « lessFree, publicly-accessible full text available February 26, 2026
-
Silvestre, João Pedro; Nanayakkara, Rahal; Tabuada, Paulo (, IEEE)Free, publicly-accessible full text available December 16, 2025
An official website of the United States government
