skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nanayakkara, Rahal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Real-time cyber-physical systems (CPS) rely on Perception-Cognition-Actuation (PCA) pipelines to enable autonomous observation, decisionmaking, and action execution. Closed-loop PCA systems utilize feedback-driven control to iteratively adapt actions in response to real-time environmental changes whereas open-loop PCA systems execute single actions without iterative feedback. The overall performance of these systems is inherently tied to the models selected for each pipeline component. Recent advancements in neural networks, particularly for perception tasks, have substantially enhanced CPS capabilities but have introduced significant complexity into the PCA pipeline. While traditional research [1] often evaluates perception models in static, controlled settings, it fails to account for the cascading latency and accuracy trade-offs that manifest across interconnected PCA modules in dynamic, real-time applications. Additionally, the proliferation of distributed device-edge-cloud architectures [2] has expanded computational possibilities but introduced new challenges in balancing latency and accuracy with resource constraints. The holistic impact of model selection, deployment platforms, and network conditions on application performance in real-time scenarios remains under-explored. 
    more » « less
    Free, publicly-accessible full text available February 26, 2026
  2. Free, publicly-accessible full text available December 16, 2025